Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Lailai Wang, Waihim Kwok and Zhongyuan Zhou*

Open Laboratory of Chirotechnology of the Institute of Molecular Technology for Drug Discovery and Synthesis and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong

Correspondence e-mail:

bczyzhou@inet.polyu.edu.hk

Key indicators

Single-crystal X-ray study
$T=294 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.009 \AA$
R factor $=0.068$
$w R$ factor $=0.155$
Data-to-parameter ratio $=19.3$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2002 International Union of Crystallography Printed in Great Britain - all rights reserved

[(R)-4,4'-Bis(diphenylphosphino)-2,2',6,6'-tetra-methoxy-3, 3^{\prime}-bipyridine- $\left.\kappa^{2} P, P^{\prime}\right]$ dichloropalladium(II)

The title compound, $\left[\mathrm{PdCl}_{2}\left(\mathrm{C}_{38} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{P}_{2}\right)\right]$, is effective in enantioselective bis-alkoxycarbonylation of styrene. The Pd atoms are located on twofold rotation axes, and there are two independent half-molecules in the asymmetric unit. In the bipyridine systems, the pyridine rings make dihedral angles of 65.2 (6) and $67.9(7)^{\circ}$ with respect to each other.

Comment

In recent years, cationic palladium(II) complexes have attracted a great deal of attention in organometallic chemistry, especially because of their catalytic reactions (Drent \& Budzelaar, 1996; Sen, 1993) and their application in the selfassembly of various metallamacrocycles (Stang \& Olenyuk, 1996). Very recently, we used cationic palladium complexes with novel dipyridylphosphine ligands in the bis-methoxycarbonylation of styrene. In our studies, the enantiomer excess of dimethyl (R)-phenylbutanedioates has been improved to 88%. As part of our efforts in investigating these catalytic reactions and the molecular structure of the cation formed by palladium and 4,4'-bis(diphenylphosphine)-2, $2^{\prime}, 6,6^{\prime}$-tetra-methoxy-3, 3^{\prime}-bipyridine (P -Phos), we present the molecular structure of the title compound, (I).

(I)

The Pd1 and Pd2 atoms lie on twofold rotation axes. Fig. 1 shows the structure of one of two independent molecules. For the Pd1 complex, the least-squares planes of the two pyridine rings of the bipyridine system in the P-Phos ligand exhibit an interplanar angle of $65.2(6)^{\circ}$, and the C5C5 ${ }^{\mathrm{i}}$ distance is 1.511 (8) \AA (see Table 1 for symmetry code). For the Pd2 complex, the corresponding dihedral angle is $67.9(7)^{\circ}$ with a C21-C21ii distance of 1.510 (7) \AA.

Experimental

All reactions and manipulations were carried out under N_{2}, using Schlenk techniques or in a glove-box. A solution of [\{(R)-P-Phos $\}$ -

Received 13 May 2002
Accepted 28 May 2002
Online 8 June 2002

Figure 1
The structure of one of the independent molecules of (I), showing 30\% probability displacement ellipsoids.
$\left.\mathrm{Pd}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]\left(\mathrm{SO}_{3} \mathrm{CF}_{3}\right)_{2}(87 \mathrm{mg}, 0.085 \mathrm{mmol})$ in methanol $(15 \mathrm{ml})$ was transferred under a nitrogen atmosphere to a 25 ml stainless steel autoclave. The autoclave was heated to 323 K under a CO pressure of 50 bar for 20 h . After the gas was released, the resulting red solution was evaporated in vacuo, and the red residue was dried overnight. Red crystals of (I), suitable for X-ray diffraction analysis, were obtained by recrystallization from a solution in $\mathrm{CHCl}_{3} .{ }^{31} \mathrm{P}$ NMR (CDCl_{3}, p.p.m.): $\delta 30.6$.

Crystal data

$\left[\mathrm{PdCl}_{2}\left(\mathrm{C}_{38} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{P}_{2}\right)\right]$
$M_{r}=821.91$
Monoclinic, C2
$a=19.551$ (3) \AA
$b=12.1135(19) \AA$
$c=18.410$ (3) A
$\beta=119.529$ (3) ${ }^{\circ}$
$V=3793.7(10) \AA^{3}$
$Z=4$
$D_{x}=1.439 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection

Bruker CCD area-detector
diffractometer
φ and ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.816, T_{\text {max }}=0.851$
12943 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.068$
$w R\left(F^{2}\right)=0.155$
$S=1.13$
8354 reflections
433 parameters
H -atom parameters constrained

6304 independent reflections
5366 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.031$
$\theta_{\text {max }}=27.5^{\circ}$
$h=-25 \rightarrow 24$
$k=-15 \rightarrow 9$
$l=-23 \rightarrow 23$
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.05 P)^{2}\right]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\text {max }}=0.64 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.35$ e \AA^{-3}
Absolute structure: Flack (1983); 1740 Friedel pairs
Flack parameter $=0.01(10)$

Table 1
Selected geometric parameters ($\left(\AA,{ }^{\circ}\right.$).

$\mathrm{Pd} 1-\mathrm{P} 1$	$2.2504(11)$	$\mathrm{Pd} 2-\mathrm{P} 2^{\mathrm{ii}}$	$2.2681(11)$
$\mathrm{Pd} 1-\mathrm{Cl} 1$	$2.3433(14)$	$\mathrm{Pd} 2-\mathrm{C} 2$	$2.3167(12)$
$\mathrm{C} 5-\mathrm{C} 5^{\mathrm{i}}$	$1.511(8)$	$\mathrm{C} 21-\mathrm{C} 21^{\mathrm{ii}}$	$1.510(7)$
$\mathrm{P}^{\mathrm{i}}-\mathrm{Pd} 1-\mathrm{P} 1$	$94.57(6)$	$\mathrm{P} 2^{\mathrm{ii}}-\mathrm{Pd} 2-\mathrm{P} 2$	$93.26(6)$
$\mathrm{P} 1-\mathrm{Pd} 1-\mathrm{Cl} 1^{\mathrm{i}}$	$89.15(5)$	$\mathrm{P} 2-\mathrm{Pd} 2-\mathrm{Cl} 2$	$89.97(4)$
$\mathrm{Cl} 1^{\mathrm{i}}-\mathrm{Pd} 1-\mathrm{Cl} 1$	$91.52(8)$	$\mathrm{Cl} 2-\mathrm{Pd} 2-\mathrm{Cl} 2^{\mathrm{ii}}$	$87.69(6)$

Symmetry codes: (i) $-x, y,-z$; (ii) $1-x, y, 1-z$.

The large elongated ellipsoids of the atom displacement parameters of C16 and C31 suggest orientational disorder of the phenyl groups.

Data collection: SMART (Bruker, 1997); cell refinement: SMART; data reduction: SHELXTL-NT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL-NT; software used to prepare material for publication: SHELXTL-NT.

References

Bruker (1997). SMART (Version 5.0) and SHELXTL-NT (Version 5.10). Bruker AXS Inc., Madison, Wisconsin, USA.
Drent, E. \& Budzelaar, P. H. M. (1996). Chem. Rev. 96, 663-681.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Sen, A. (1993). Acc. Chem. Res. 26, 303-310.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
Stang, P. J. \& Olenyuk, B. (1996). Angew. Chem. 108, 798-802.

